Improving document clustering in a learned concept space

نویسندگان

  • Jean-François Pessiot
  • Young-Min Kim
  • Massih-Reza Amini
  • Patrick Gallinari
چکیده

Most document clustering algorithms operate in a high dimensional bag-of-words space. The inherent presence of noise in such representation obviously degrades the performance of most of these approaches. In this paper we investigate an unsupervised dimensionality reduction technique for document clustering. This technique is based upon the assumption that terms co-occurring in the same context with the same frequencies are semantically related. On the basis of this assumption we first find term clusters using a classification version of the EM algorithm. Documents are then represented in the space of these term clusters and a multinomial mixture model (MM) is used to build document clusters. We empirically show on four document collections, Reuters-21578, Reuters RCV2-French, 20Newsgroups and WebKB, that this new text representation noticeably increases the performance of the MM model. By relating the proposed approach to the Probabilistic Latent Semantic Analysis (PLSA) model we further propose an extension of the latter in which an extra latent variable allows the model to co-cluster documents and terms simultaneously. We show on these four datasets that the proposed extended version of the PLSA model produces statistically significant improvements with respect to two clustering measures over all variants of the original PLSA and the MM models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

خوشه‌بندی اسناد مبتنی بر آنتولوژی و رویکرد فازی

Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...

متن کامل

Document Clustering in a Learned Concept Space

Document clustering is one of the fundamental techniques of unsupervised learning from unstructured textual data which constitutes a real saving in terms of efficiency for various information retrieval (IR) tasks. The clustering results are not only used as basic information for the structure of a collection, but also as a preceding step before conducting other IR applications. On the other han...

متن کامل

Document Clustering: Before and After the Singular Value Decomposition

Document Clustering is an issue of measuring similarity between documents and grouping similar documents together. Information Retrieval (IR) is an issue of comparing query with a collection of documents to locate a set of documents relevant to a particular query. In the vector space IR model, a query is treated as a document which consists of a few terms. Therefore, in both clustering and retr...

متن کامل

Implications of the Recursive Representation Problem for Automatic Concept Identification in On-line Governmental Information

This paper describes ongoing research into the application of unsupervised learning techniques for improving access to governmental information on the Web. Under the auspices of the GovStat Project (http://www.ils.unc.edu/govstat), our goal is to identify a small number of semantically valid and mutually exclusive ”concepts” that adequately span the intellectual domain of a web site. While this...

متن کامل

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Process. Manage.

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2010